Semilinear Geometric Optics for Generalized Solutions

نویسندگان

  • Y.-G. Wang
  • M. Oberguggenberger
چکیده

This paper is devoted to the study of nonlinear geometric optics in Colombeau algebras of generalized functions in the case of Cauchy problems for semilinear hyperbolic systems in one space variable. Extending classical results, we establish a generalized variant of nonlinear geometric optics. As an application, a nonlinear superposition principle is obtained when distributional initial data are perturbed by rapid oscillations. AMS Subject Classification: 35L45, 35B05, 35D05, 46F30

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Institute for Mathematical Physics Semilinear Geometric Optics for Generalized Solutions Semilinear Geometric Optics for Generalized Solutions

This paper is devoted to the study of nonlinear geometric optics in Colombeau algebras of generalized functions in the case of Cauchy problems for semilinear hyperbolic systems in one space variable. Extending classical results, we establish a generalized variant of nonlinear geometric optics. As an application, a nonlinear superposition principle is obtained when distributional initial data ar...

متن کامل

Focusing of Spherical Nonlinear Pulses In

This paper describes the behavior of spherical pulse solutions of semilinear wave equations in the limit of short wavelength. In three space dimensions we study the behavior of solutions which are described by nonlinear geometric optics away from the focal point. With a natural subcriticality hypothesis on the nonlinearity we prove that the possibly nonlinear eeects at the focal point do not aa...

متن کامل

Bifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions

Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In ...

متن کامل

A Microscopic Convexity Principle for Nonlinear Partial Differential Equations

Caffarelli-Friedman [7] proved a constant rank theorem for convex solutions of semilinear elliptic equations in R2, a similar result was also discovered by Yau [28] at the same time. The result in [7] was generalized to R by Korevaar-Lewis [27] shortly after. This type of constant rank theorem is called microscopic convexity principle. It is a powerful tool in the study of geometric properties ...

متن کامل

Semilinear Elliptic Equations with Generalized Cubic Nonlinearities

A semilinear elliptic equation with generalized cubic nonlinearity is studied. Global bifurcation diagrams and the existence of multiple solutions are obtained and in certain cases, exact multiplicity is proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000